Sorry, you need to enable JavaScript to visit this website.

Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation.

TitoloPerturbation of polyamine catabolism can strongly affect root development and xylem differentiation.
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione2011
AutoriTisi, Alessandra, Federico Rodolfo, Moreno Sandra, Lucretti Sergio, Moschou Panagiotis N., Roubelakis-Angelakis Kalliopi A., Angelini Riccardo, and Cona Alessandra
RivistaPlant physiology
Volume157
Paginazione200-15
Data di pubblicazione2011 Sep
ISSN1532-2548
Abstract

Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.

Citation Key2322